Session 12

Service Systems

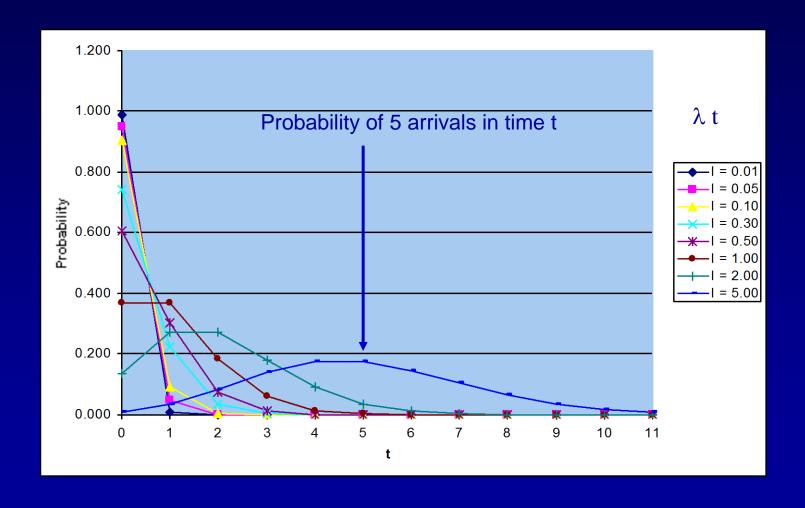
Single-Server Queues

Review of last time: Inventory Modeling

- Inventory modeling is one example of capacity problem
- Inventory is especially important in businesses that deal in materials, and most especially when interest rates are high
- Cost factors associated with inventory include interest expense, ordering cost, space, shrinkage and other holding costs
- When demand is constant, we can define an Economic Order Quantity (EOQ)

Service systems

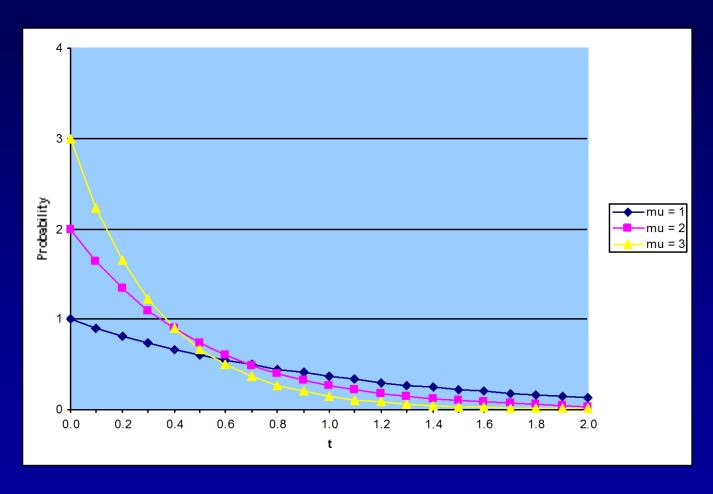
- Service system: a service facility containing servers, customer entry and exit facilities, and a waiting facility
- Examples
 - Bank tellers/waiting line
 - Airline passenger check-in/waiting line
 - Cafeteria
 - Hospital emergency room
 - Supermarket checkouts
 - Airport runway
 - Highway toll booths
 - Elevators
 - Telephone system (PBX)
 - Gas pumps
 - Tennis courts at health club


Service system components

- Source population: where customers come from
 - Finite (aircraft to be serviced on a carrier)
 - Infinite, or effectively infinite (Customers for a fast-food outlet)
 - We deal only with infinite populations
- Arrival mechanism: how customers enter the service line
 - Place in line
 - Take a number
- Waiting line or lines: facility for storing customers
- Selection for service: process for selecting next customer
 - FIFO
 - Priority (jump to head of line)
 - Preemptive priority (interrupt customer being served)
- Departure: process for customer exit after service

Arrival characteristics

- Mean arrival rate is constant
- Arrival distribution: statistical distribution of arrival times
 - Batch (e.g., arriving passengers)
 - Random
 - Statistical distribution
 - If arrivals are independent, we model them by Poisson distribution
- Arrival management
 - Often arrivals cannot be controlled
 - Control strategies are used to reduce maximum required server capacity
 - Appointments/scheduling
 - Off-peak pricing discount
 - Peak pricing surcharge


Poisson distribution

Departure characteristics

- Mean service time is constant
- Distribution of service times
 - Random
 - Statistical distribution
 - If service times are independent we model them as the interarrival times of a Poisson Distribution (Exponential Distribution)
- Departure management
 - As soon as a customer is serviced, they instantly depart
 - Inventory security problem
 - Movie theater: separate doors for exit to prohibit multiple viewings
 - Supermarkets
 - Can't get out without going through a checkout
 - Must leave after checkout
 - Airline check-in: no restrictions on departure after service

Exponential distribution

Service facility properties

- Service can have stages single-stage or multistage Examples
 - Airport check-in (without kiosk) is single-stage, but the passenger terminal is multistage
 - Cafeterias are usually multistage, banks usually single-stage
- Parallelism
 - In servers
 - In waiting area
- Hybrid
 - Tandem toll both is single-stage, single line, multi-server, but the two servers interact

Modeling waiting lines

- Critical assumptions for our model: For both arrival and service
 - Rate is constant
 There are two rates the average arrival rate and the average service rate
 - Arrival events are independent (Poisson distribution)
 The fact that a customer has just arrived doesn't make it any more or less likely that another one will.
 - The fact that a customer has just been serviced doesn't change the rate at which the next customer will be serviced.
 - The system is in equilibrium (the doors opened a long time ago)
- Fundamental balance equation
- If P_n = probability that there are n customers in the system Then

$$\lambda P_{n-1} = \mu P_n$$

Performance measures for single server systems

12/11

Probability of <i>n</i> customers in the system	$P_n = \left(\frac{\lambda}{\mu}\right)^n \left(1 - \frac{\lambda}{\mu}\right) $ 12.1
Utilization of server	$\rho = \frac{\lambda}{\mu}$ 12.2
Probability of $>k$ customers in the system	$P_{n>k} = \left(\frac{\lambda}{\mu}\right)^{k+1} $ 12.3
Average number of customers in the system	$L_{s} = \frac{\lambda}{\mu - \lambda}$ 12.4
Average time in system	$W_s = \frac{1}{\mu - \lambda} $ 12.5
Average waiting time	$W_q = \frac{\lambda}{\mu(\mu - \lambda)}$ 12.6
Average number waiting	$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}$ 12.7
Average number waiting when there is a line	$L_a = \frac{\mu}{\mu - \lambda}$ 12.8

Example

- Fast food drive-thru
 - Customers arrive at a Poisson rate of 20/hr
 - Service times average 2.6 minutes, exponentially distributed
 - How long is the average waiting line?

$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}$$

• Excluding empty lines, what is the average line length?

$$L_a = \frac{\mu}{(\mu - \lambda)}$$

Readings

• Readings: Service Systems

Preview of next time: Using Macros I

- Macros are small programs you write to add capability to Excel
 - Command macros change the environment
 - Function macros compute and return values
- Language: Visual Basic for Applications (VBA)
- VBA Macros reside in modules
- Function macros simplify worksheets (but they require sophistication)